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Abstract. Various static spin-correlation functions and the weights of the spin excitations, or
collective normal modes, in the van Hove response function, observed in neutron scattering
experiments, are calculated as a function of temperature for a model quantum-spin chain.
The spins interact through an isotropic Heisenberg exchange that extends to nearest-neighbour
spins. In our model, spins of magnitude 1/2 form a dimerized chain with alternating
exchange interactions. We explore the static and dynamic properties for ferromagnetic and
antiferromagnetic exchange interactions. Results for the various properties are shown to be
exact in the limit of a high temperature, and we argue that the results are very good at low
temperatures. Unlike the case for linear spin-wave theory, the results are also exact in the limit
of strong dimerization, i.e. non-interacting coupled pairs of spins.

1. Introduction

Recent experimental progress in the investigation of low-lying excitations in one-di-
mensional spin-1/2 Heisenberg chains has led to renewed interest in theoretical approa-
ches to model systems. Special attention is given to systems where, either through a
spin-Peierls transition, as in the compounds CuGeO3 [1] and NaV2O5 [2], or through an
intrinsic structural asymmetry, as in CuWO4 [3] and (VO)2P2O7 [4], the effective intra-chain
antiferromagnetic interactions alternate in strength. The materials can show no magnetic
order at all (CuGeO3), or, due to inter-chain coupling, long-range antiferromagnetic order
(CuWO4). In the absence of magnetic order, the ground state of an isolated chain is well
described by a ‘dimer state’, which consists of adjacent pairs of spins coupled into singlets.
The dimer state has total spin zero, and a gap to low-lying excitations, because of the energy
required to excite a singlet dimer to a triplet. Assuming that such local excitations acquire
dispersion by hopping from one dimer to the next, a quantitative account of the well-defined
magnon peak observed in neutron scattering can be given [5, 6]. This picture provides an
appealing intuitive interpretation of the energy gap at the centre of the Brillouin zone and of
the threefold degeneracy of the excitations, and is exact in the limit of strong dimerization.
Conventional spin-wave theory, applied to the paramagnetic state where expectation values
of products of spin operators display a full rotational symmetry, cannot readily account for
these features.

Neither the spin-wave nor the dimer theory addresses the observed continuum
component of the spectrum. This has been interpreted as a two-magnon continuum, or
alternatively as a two-soliton continuum [7]. In the dimerized chain, a soliton may be
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envisioned as a single unpaired spin, separating segments of singlet pairs. However, these
solitons are subject to a confining effective potential [8], and are always bound in pairs; in
this picture, a magnon is a triplet two-soliton bound state. Thus, a two-soliton continuum is
possible only in the case of a spin-Peierls chain, and requires a generalization of the model
considered here, to include the phonon coupling responsible for spontaneous dimerization.
An exception is the limit of a regular (undimerized) chain, such as KCuF3 [9], in which
the confining potential vanishes, the solitons unbind and the magnon peak is replaced by a
two-soliton continuum. A full understanding of the excitation spectrum of dimerized chains
might be revealed with a combination of techniques, including field theories and numerical
simulations. A review completed in 1981 of various theories on this subject is found in
reference [10].

Apart from the dimerized antiferromagnetic chain, one may also consider its
ferromagnetic counterpart, and also a ‘mixed’ chain where the couplings alternate in sign
as well as magnitude. Whereas the ferromagnetic case is less well studied, Sr14Cu24O41

has recently been proposed as a candidate for having a mixed-chain structure [11], and
first successful neutron scattering experiments have been performed with single crystals of
this material [12, 13]. Furthermore, there are a number of organic compounds [14, 15]
which can be described by a mixed-chain model. Past theoretical work on the mixed
chain [16] has, apart from an investigation of the limit of weakly ferromagnetically coupled
antiferromagnetic dimers [17], concentrated on the connection with theS = 1 ‘Haldane
gap’ system.

The theory presented in this paper treats a dimerized chain of Heisenberg spinsS = 1/2
with full rotational symmetry and no long-range magnetic order. It can be applied for an
arbitrary strength of the dimerization, is, unlike spin-wave theory, correct in the limit of
isolated dimers, and the expected results are recovered in the limit of a regular chain. It
does not address the continuum part of the spectrum. We show that our results are good in
an interval of temperatures of interest in the interpretation of available experimental data.
In the limit of an infinite temperature, no approximation in the results remains.

In the following section we define the model and describe the method of closing the
infinite hierarchy of equations of motion for the spin operators. Thereafter, in sections 3
and 4, one finds our expressions for the static spin-correlation functions, the wave-vector-
dependent isothermal susceptibility, and the spectral weights of the spin excitations in the
van Hove response function observed in neutron scattering experiments. Results for these
quantities are found in sections 5 and 6: first a collection of analytic results valid at the two
extremes of the temperature, and, secondly, extensive results at intermediate temperatures
obtained by numerical analysis. Our conclusions are gathered in section 7.

2. The model and equations of motion

Quantum-spin operators placed at lattice sites in a chain interact by a Heisenberg exchange
mechanism of alternating strengthJ andαJ . It is convenient to employ two spin operators,
S andT , of equal magnitude 1/2, placed at alternate sites in the chain. The Hamiltonian
of the dimerized chain is

H = J
∑
l

{Sl · Tl+1+ αSl+1 · Tl+1} (1)

wherel = 0,±1, . . .. We will consider also a regular Heisenberg chain whose Hamiltonian
is obtained from (1) by settingα = 1.
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To study the dynamic and static properties of the model, we construct the equation of
motion for the spin-ladder operatorsS+ = Sx + iSy , andT +. This is the first equation of
an infinite hierarchy of equations for the time development. We close the set of equations
at the second level, following a scheme used by Kondo and Yamaji [18] in their study of a
regular chain, withα = 1.

In constructing the equations, one uses〈Sα〉 = 0, since there is no long-range magnetic
order. The model is isotropic in the spin space, so〈SxSy〉 = 〈SySz〉 = 〈SzSx〉 = 0, and
〈Sαa Sαb 〉 is independent of the Cartesian label. Furthermore,〈S+a S−b 〉 = 〈S−a S+b 〉 = 2〈SzaSzb〉.

Following a standard prescription [18, 19] an expression for the van Hove response
function S(q, ω) is obtained from the approximate equations of motion. This expression
contains a number of correlation functions as parameters. Through a Fourier transform over
the Brillouin zone these correlation functions are recovered fromS(q, ω), and their values
are thus determined by a self-consistency condition. At a temperature large compared to|J |,
solutions for the correlation functions are found by analytic methods. A numerical method
is used to determine the self-consistent solutions at an arbitrary temperature,T , which can
be checked against the analytic results forT � |J |. A few analytic results have also been
obtained forT � |J | and for correlation functions of large spatial index.

3. Self-consistent equations

The spin operatorsS andT in (1) have a magnitude 1/2. In the equations of motion for
S+ andT + we use(S+)2 = (S−)2 = 0 and(Sz)2 = 1/4, and the corresponding identities
for T . The equations of motion, obtained by closure at the second level, contain three
correlation functions:

A1 = 〈Szl T zl+1〉 A′1 = A−1 = 〈Szl T zl 〉 (2a)

and

A2 = 〈Szl Szl+1〉 = 〈T zl T zl+1〉. (2b)

For α = 1 one hasA1 = A′1. A fourth thermodynamic variable, denoted byξ , arises in the
mechanism chosen to close the hierarchy of equations, e.g.,

Szl S
z
l+1T

+
l+1 ≈ ξ〈Szl Szl+1〉T +l+1 = ξA2T

+
l+1. (3)

The introduction of the variableξ is essential for the success of our approach. Without this
variable, the self-consistency equations would overdefine the correlation functions [20, 21].

It is interesting to enquire whether the closure of the equations of motion that we adopt
can be successfully applied to spinsS > 1/2. We have concluded that closure at the
second level, used here, applied toS > 1/2 is not robust and entails a larger degree of
approximation than found in our case ofS = 1/2. This view is reached by consideration of
terms in the second equation of motion that are zero forS = 1/2, e.g.(S+)2Sa. To reach
the same situation forS = 1, say, one needs(S+)3Sa and this may first occur at the third
level in the hierarchy of equations of motion. So, to achieve the level of approximation that
we have forS = 1/2 with spins of a larger magnitude, one must close the hierarchy at the
third or higher level.

Our model possesses the obvious property that it is unchanged with the transformation

α→ 1/α J → αJ

A1→ A′1 A′1→ A1 A2→ A2.
(4)

This transformation is nothing but an inversion of the lattice around a site and a rescaling
of the exchange interactions. We can express this invariance in a more general form as
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follows: An = A′−n for odd integern, andAn = A−n for evenn. Note that the indexn,
unlike l in the Hamiltonian (1), counts the total number of bonds between any two spins in
the chain. Under the transformation, we findξ → ξ ; cf. (14).

The normal-mode frequencies, and the transcendental equations forA1, A
′
1, A2, andξ

are couched in terms of the following quantities. LetÃn = ξAn, and

f = 1

2
+ 2αÃ′1+ 2αÃ2 g = 1

2
α + 2Ã1+ 2Ã2

1 = 2α(Ã1− Ã′1) h = 1

2
(1+ α2)+ 4αÃ2.

(5)

Defining

C = J 2
√
(αg + f )2+ 2αgf (cosq − 1)− (1 sinq)2 (6)

whereq is a wave-vector in units of the inverse of the distance between two neighbouring
S, or T , the four normal-mode frequencies satisfy

ω2
a,b = J 2(h+ 2α(Ã1+ Ã′1) cosq)± C. (7)

Quantities with an indexa have to be evaluated using+C, and those with an indexb have
to be evaluated using−C. For q = 0 we find ωa 6= 0, andωb = 0. With α = 1 the
modes cross atq = π , and the physically relevant mode isωb for 0< q < π and isωa for
π < q < 2π , recovering the result for the regular chain [18] in a doubled Brillouin zone;
cf. figures 1 and 5, later. In the limitα = 0 one findsωa = 1 andωb = 0, which follow
from the resultsA′1 = A2 = 0 andA1 = −1/4. For a small value ofα, we find

ωa ≈ J (1+ 2αÃ1 cosq). (8)

Next we consider the transcendental equations that follow by calculating any two-
spin correlation function from the approximate equations of motion. For a temperatureT ,
expressed byβ = 1/kBT , we find that

An = 1

4π

∫ 2π

0

dq

C

{
coth(βωa/2)

ωa
Ga(q)− coth(βωb/2)

ωb
Gb(q)

}
. (9)

For n = 0, 2, 4, . . ., theGa,b(q) read

Ga,b(q) = −J 3 cos
nq

2
{(±C/J 2)(A1+ αA′1)+ αg(A1 cosq + αA′1)+ f (A1+ αA′1 cosq)}

(10)

and forn = ±1,±3, . . ., they read

Ga,b(q) = J 3 cos
(n− 1)q

2
{(±C/J 2)A1+ f (A1+ αA′1)+1(A1 cosq + αA′1)}

+ J 3 cos
(n+ 1)q

2
{(±C/J 2)αA′1+ αg(A1+ αA′1)−1(A1+ αA′1 cosq)}

(11)

where, again, indicesa andb refer to the sign ofC. Settingn = 0 andn = 2 in (10), and
n = ±1 in (11), and thereby recoveringA0, A2, A1, andA′1, respectively, we obtain the
four equations that are solved self-consistently. For completeness, we giveGa,b for A1 and
A′1 from (11) in a simpler form as

G
A1
a,b(q) = J 3{(±C/J 2)(A1+ αA′1 cosq)+ αA′11 sin2 q + (A1+ αA′1)(αg cosq + f )}

(12)
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for A1, and

G
A′1
a,b(q) = J 3{(±C/J 2)(αA′1+ A1 cosq)− A11 sin2 q + (A1+ αA′1)(αg + f cosq)}

(13)

for A′1. One more relation arising from the symmetry of our model is

A′1− αA1+ 4ξ{A1A
′
1(α − 1)+ A2(αA

′
1− A1)} = 0. (14)

We derive this by requiringAn for n even to be an invariant under the transformation in
(4), and we deduce thatξ → ξ .

4. Observable quantities

The quantity observed by inelastic neutron scattering is the van Hove response, a function
of wave-vector and frequency:

S(q, ω) = 1

2π

∫ ∞
−∞

dt exp(−iωt)
∑
m,m′

eiq(m′−m)〈S+m(0)S−m′(t)〉 (15)

wherem andm′ range over every site in the chain. At this point it is important to note
that we assume a regular spacing throughout the whole lattice in spite of an alternating
exchange interaction. This is in agreement with the very small observed lattice distortion,
e.g., in CuGeO3, but not necessarily true for structurally dimerized materials, an example of
which is (VO)2P2O7. However, onlyq-dependent quantities derived from (15) are affected
by a lattice distortion, and, for the purpose of clarity, we have omitted the resulting more
complicated expressions for observable quantities like (16) and (19). Real-space correlation
functions remain unaffected by a lattice distortion.

Since the normal modes are undamped, at the level of approximation that we employ,
they make contributions to the van Hove response that have a dependence on frequency
given byδ(ω±ωa) andδ(ω±ωb). The twoδ-functions for the creation events,δ(ω−ωa,b)
are, apart from the detailed-balance factor 1+ n(ω), accompanied by the spectral-weight
functions, given per spin:

Fa,b(q) = −J 3 Fa,b

±Cωa,b

(
1− cos

q

2

)
(16)

where

Fa,b(q) = (A1+ αA′1)
(
±C/J 2+ αg − f − 2f cos

q

2

)
+ 21(A1− αA′1) cos

q

2

(
1+ cos

q

2

)
− 2A1(αg − f )

(
1+ cos

q

2

)
. (17)

Again, quantities with an indexa involve+C, and quantities with an indexb involve−C.
For small values ofα, we get

Fa ≈ −2A1

(
1− cos

q

2

)
(1− 2αÃ1 cosq). (18)

Finally, we can derive the wave-vector-dependent susceptibilityχ(q) per spin from the
relation

χ(q) =
∫ ∞
−∞

dω

ω
S(q, ω) =

∫ ∞
0

dω

ω

S(q, ω)

1+ n(ω) =
Fa
ωa
+ Fb
ωb
. (19)
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The absence of the usual factor 2 in the right-hand side of the first equality in (19) stems
from the fact that we give the susceptibility for correlations〈SzSz〉q , which are half the
value of〈S+S−〉q , used in (15) and (16).

Results obtained from our model by settingα = 0 are easy to derive. It can be shown
that the foregoing expressions evaluated forα = 0 reproduce those results. Also, setting
α = 1 we recover all of the expressions provided for the regular chain as given in [18].
The authors of [18] did not consider the spectral weights (16), the susceptibility (19), or the
dimerized chain.

5. Analytic results

First we give the static susceptibility in terms of the correlation functionsAn for arbitrary
temperature. We find forq = 0

χ(0) = −4A1

J

(α + 4Ã′1+ 4Ã2)

(α − 4Ã′1+ 4Ã2)(1− 4αÃ1+ 4αÃ2)− 64αÃ1Ã
′
1

(20)

and forq = π

χ(π) = −4A1

J

(α − 4Ã′1+ 4Ã2)

(α − 4Ã′1+ 4Ã2)(1− 4αÃ1+ 4αÃ2)
. (21)

In the limit T � |J |, the leading-order terms in an expansion ofA1, A
′
1, andA2 in terms

of βJ are found to be

A1 = −1

16
βJ A′1 =

−α
16
βJ A2 = α

64
(βJ )2. (22)

These results are identical to results obtained by an independent calculation of the correlation
functions that uses an expansion of exp(−βH), e.g.,

A1 = −βJ
(

1

3
S(S + 1)

)2

. (23)

For ξ we find from (14) and (22) the valueξ = 1 in this limit. Equally, the susceptibilityχ
can be derived. It becomes independent of the wave-vector, and approaches the well-known
result

χ = 1

4
β = S(S + 1)

3
β. (24)

On the low-temperature side, analytic results can be derived forα = 1, and they coincide
with those given in reference [18]. For arbitraryα, the leading-order behaviour for largen
can be derived from (9), (10), and (11). In all cases these show at non-zero temperature
an exponential decay, with a correlation length which diverges asT → 0. For the pure
ferromagnet (J < 0, α > 0) at T = 0, we findAn = 1/12 for all n 6= 0, as expected for
a saturated ferromagnetic ground state. In all other cases, atT = 0, we findAn ∝ 1/n2

for largen, i.e. an algebraic decay of correlations. This may be compared with the exact
result (p 160 in [22]) for the regular Heisenberg antiferromagnet (J > 0, α = 1), namely
An ∝ (ln n)1/2/n. In this case our theory correctly shows algebraic decay of correlations in
the ground state, but underestimates the strength of short-range correlations.
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Figure 1. Normal modesωa,b (symmetric aroundq = π ) and the respective spectral weights
Fa,b for J = 1 andα = 0.9 at T � |J |. Solid lines areωa andFa , dashed lines areωb and
Fb. Also given is the wave-vector-dependent susceptibilityχ(q) (dash-dotted line) as defined
in (19).

Figure 2. Correlation functions 4|A1| (upper solid line), 4A2 (lower solid line), and 4|A′1|
(dashed line), andq = 0 susceptibility (dash-dotted line) forJ = 1 andα = 0.9.

6. Numerical results

For an arbitrary temperature, equations (9), (10), (12), (13), and (14) are solved numerically.
We discuss the numerical results in three representative cases. In each case, we give an
example of the normal-mode dispersion relations, the spectral weights, and the wave-vector-
dependent susceptibility (figures 1, 3, 5). Owing to our choice of the length scale and the
fact that we have two spins per unit cell, the normal modesωa,b have a period of 2π and
are symmetric aroundq = π , whereas the spectral weightsFa,b and the susceptibilityχ(q)
have a period of 4π and are symmetric aroundq = 2π . The temperature dependence
of the correlation functions and static susceptibilities for a range 0< T < 3J appear
in figures 2, 4, 6. Note, that the correlation functions are multiplied by a factor of 4 in
the plots, in accordance with the practice of normalizing the same-site correlation function
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Figure 3. Temperature dependence of the spectrum. Top to bottom:T = 0, T = 0.3J , T = J .
Given are normal modesωa,b (symmetric aroundq = π ) and the respective spectral weights
Fa,b for J = 1 andα = −0.5. Solid lines areωa andFa , dashed lines areωb andFb. Also
given is the wave-vector-dependent susceptibilityχ(q) (dash-dotted line).

A0 = S(S + 1)/3 = 1/4 to the value of 1, and the fact thatkB = 1 in all plots. We only
consider cases with|α| < 1, as the parameter space|α| > 1 can be mapped to|α| < 1 by
use of the transformation (4).

Common to all temperature-dependent plots (figures 2, 4, 6) is the observation that
already forT > J , the correlation functions and the susceptibility agree well with their
analytic high-temperature expansions. At low temperatures, one can distinguish clearly
between antiferromagnetic correlations showing a maximum atT ≈ 0.3J (figure 2 andA′1
in figure 4), and ferromagnetic correlations reaching their highest values atT = 0 (figure
6 andA1 in figure 4). This feature has already been observed in reference [18], and seems
to be characteristic to our results. The plots of the normal modes and spectral weights
reveal the nature of the local order as expected from the respective signs ofJ andα. These
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quantities are plotted at temperaturesT � |J |, in order to reveal their structure more clearly.
We observe that varying the temperature on an energy scale ofαJ has a minor influence
on the plotted quantities, i.e. the relevant energy scale for the temperature dependence of
the observed quantities seems to be the larger ofJ andαJ , which in our case is alwaysJ .

Figures 1 and 2 refer to the ‘pure’ antiferromagnetic chain, i.e., a chain withJ > 0 and
α > 0. From figure 1, the behaviour in the limitα → 1 can be seen as the normal modes
become degenerate atq = π and the spectral weights select the relevant mode forq < π

and q > π , respectively. The susceptibility peaks atq = 2π , i.e., the antiferromagnetic
point. The contribution to the scattering at that point comes from the gapped branchωa.
The approximations made in our theory do not allow the lower branchωb to have a gap
at q = 0, i.e. the lower branch is reminiscent of a Goldstone mode. In consequence, the
susceptibility does not decay exponentially at very low temperatures, but remains finite
(figure 2). The sum of the spectral weightsFa + Fb, i.e. the integrated neutron scattering
intensity, has a finite slope atq = 0 and agrees qualitatively with experiments performed at
low temperatures (figure 10 in [1]). Looking at figure 1, at higher temperatures the displayed
quantities are smaller and show less dispersion, and no radical new effects emerge.

Figure 4. The correlation functions 4|A1| (upper solid line), 4|A2| (lower solid line), and 4A′1
(dashed line), andq = 0 susceptibility (dash-dotted line) forJ = 1 andα = −0.5.

The next case (figures 3, 4) is a ‘mixed’ chain of antiferromagnetic bonds alternating
with ferromagnetic bonds (J > 0, α < 0). The maxima in the susceptibilityχ(q) at
q = π andq = 3π indicate a locally ordered two-up–two-down spin pattern. Note that the
spectral weight forωb vanishes atq = 0 andq = 2π , and mimics theq-dependence of
χ(q). In figure 3, we have also given representative plots of the spectra for three different
temperatures (increasing from top to bottom). With increasing temperature the susceptibility
becomes independent ofq and approaches its high-temperature value ofβ/4 over the whole
range of the Brillouin zone.

Finally, a pure ferromagnetic chain (J < 0, α > 0) is given in figures 5 and 6. As
expected for a ferromagnetically ordered chain atT = 0, the correlation functionsA1, A′1,
andA2 take the value of 1/12, irrespective of the coupling constantsJ andα. This result can
also be derived analytically from our equations. Consequently, the susceptibility diverges
at q = 0 for smallT as 1/T .
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Figure 5. Normal modesωa,b (symmetric aroundq = π ) and the respective spectral weights
Fa,b for J = −1 andα = 0.9 at T � |J |. Solid lines areωa andFa , dashed lines areωb and
Fb. Also given is the wave-vector-dependent susceptibilityχ(q) (dash-dotted line).

Figure 6. The correlation functions 4A1 (upper solid line), 4A2 (lower solid line), and 4A′1
(dashed line), andq = 0 susceptibility (dash-dotted line) forJ = −1 andα = 0.9.

7. Conclusions

Our theoretical approach to the dimerized chain provides useful results for quantities
observed in neutron scattering experiments. In addition, we provide a number of analytic
expressions for various quantities shown to be correct for certain points in the parameter
space ofJ , α, andT . It must be emphasized thata priori the quality of our theory does not
depend on the size and sign ofα, and we demonstrate that it is exact forα = 0. We provide
expressions for observable quantities like the van Hove response and the susceptibility in
terms of the correlation functionsA1, A′1, andA2, and the model parametersJ andα at
arbitrary temperatures, and our theory therefore enables the experiments to be interpreted
in a straightforward manner.

For the case of the antiferromagnetic chain, in our theory a gapless branch is always
present for any non-zeroα. The gapless mode is the analogue of a Goldstone mode for a
system without long-range order, and is unavoidable with our chosen scheme for linearizing
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the dynamical equations. However, it is known that the dimerized spin chain has a gapped
spectrum unlessα = 1. The resolution of this problem lies in the weights assigned to these
modes. Indeed, the gapless branch has no weight in it at the points of high symmetry in
the Brillouin zone, and in all cases the predicted properties are dominated by the gapped
branch of the spectrum. The gapped branch is absent altogether forα = 0, and in this
limit, as well as for high temperatures, the theory becomes exact. For the regular (α = 1)
antiferromagnet, the decay of correlations with increasing distance compares well with exact
results. The integrated neutron scattering intensity can be fitted to experimental results in
order to derive information about the exchange constantsJ andα.

Results like those given for mixedS = 1/2 chains (figures 3, 4) have been compared
to very recent neutron scattering data on Sr14Cu24O41 [13], whereα is reported to be of
the order of−0.1. We get perfect qualitative agreement of our expressions (8) and (18)
with both the observed dispersion and the spectral weight. As the data have been taken at a
rather low temperature (T/J ≈ 0.2 in our notation), our theory underestimatesα by about
a factor of 2 compared to the theory used in the paper [17], which is valid atT = 0 and
small values ofα. However, we can clearly confirm the assumptions made by the authors
of [13] about the intra-dimer and inter-dimer distances. We predict quite striking changes
in the van Hove response as the temperature is increased.

For the ferromagnetic chain we believe our excitation spectrum to be accurate over the
whole temperature range, as no gap can be expected in this case [10]. Our theory correctly
shows a long-range ordered state atT = 0. To the best of our knowledge, there have been
no experiments performed yet on ferromagnetic alternating chains.

Finally, we would like to remark that low-temperature properties of one-dimensional
systems are generally difficult to investigate experimentally, as there will always be
signatures of higher-dimensional interactions below a finite temperature. Given the
increasing number of compounds found by ingenious manufacturing and the progress in
experimental skills, one can be confident that many more experimental results on low-
dimensional magnetic materials will emerge in the future.
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